假期里,多地重点商圈、购物中心迎来客流回归,北京全市重点监测的百货、超市、专业专卖店、餐饮和电商等业态企业实现销售额35.3亿元。上海主要商业综合体客流量环比增长82%,假期前两天,线下和线上消费额分别达到120.1亿元和109.8亿元。重庆、杭州、济南等城市发放消费券,延长商超营业时间,餐饮、零售、文娱等消费增长较快,各地超市也迎来年货购买的热潮。
商务大数据最新监测,在“2023全国网上年货节”带动下,2022年12月31日—2023年1月1日,全国网络零售额812亿元,同比增长11.6%,其中,实物商品网络零售额702亿,同比增长14.8%。生鲜零食、智能家电、冰雪装备等品类销量领先,鲜花订单量环比上月增长3倍以上,红玫瑰、粉玫瑰、向日葵等最受欢迎。
元旦假期,长线游迎来小高峰。出行平台数据显示,成都、上海、深圳、广州、杭州、昆明等城市出发的预订量超过去年同期。三亚、西双版纳、陵水、海口、厦门、万宁等旅游度假城市,吉林白山、河北张家口等滑雪城市,酒店连住3天以上的订单占比接近三成。全国民宿预订环比上月同期增长近两倍。
提速近10倍!基于深度学习的全基因组选择新方法来了******
近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物(Molecular Plant)》上。
全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。
统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。
相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。
该研究团队以玉米、小麦和番茄3种作物的4种不同维度的群体数据为测试材料,通过创新深度学习算法框架开发了全基因组选择新方法。
与其他五种主流预测方法相比,该方法有以下优点: 可以利用多组学数据开展全基因组预测;算法设计中包含批归一化层、回调函数和校正线性激活函数等结构,可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。
该研究得到了国家重点研发计划、国家自然科学基金、海南崖州湾种子实验室和中国农业科学院科技创新工程等项目的支持。
学术支持
中国农业科学院作物科学研究所
记者
宋雅娟
(文图:赵筱尘 巫邓炎)