乘警师徒的“第一个春运”和“最后一个春运”******
(新春走基层)乘警师徒的“第一个春运”和“最后一个春运”
中新网福州1月19日电 (吴晟炜 刘晓彬 戴俊淇)春节临近,福州的大街小巷张灯结彩,格外喜庆。福州火车站内,拎着大包小包的旅客比肩接踵,满怀期待地踏上了回家团圆的列车。
张邵军是福州铁路公安处乘警支队的“60后”老乘警。在他的回忆里,有十几个春节都是在列车上度过的,平均一年有200多天在列车上。今年也是他值守的最后一个春运。
福州开往重庆北站的K1268列车,单程超过1971公里,途经四省一市,中途停靠南昌、武昌、宜昌东等大大小小15个车站。张邵军带着徒弟刘子璞登上了这趟列车。
“今年2月我就要退休了,这是我在岗位上的最后一个春运,一定要站好最后一班岗。”张邵军语气平静,低头整理着身上的藏蓝色警服。
早上8时30分,距离K1268次列车发车还有两个多小时,张邵军和刘子璞来到单位签到,仔细做好列车值勤前的准备工作。
图为乘警出乘前整理警容。 福州铁路公安处供图张邵军和刘子璞是福州铁路公安处乘警支队执勤警务队的一对铁路警察师徒,虽然刚搭档不久,但是默契感十足。
自1980年从警开始,张邵军先后在福州铁路公安处押运队、巡警队、车站派出所、乘警支队工作过,获得过先进工作者、优秀党员、个人嘉奖等诸多荣誉,是警队里的好榜样,更是年轻民警的“好导师”。刘子璞则是2022年新入警的“00后”。在张邵军的带领下,他认真学习列车值乘经验、列车规范执法等各种警务技能。面对从警生涯的第一个春运,他充满着好奇与期待。
领取完出乘装备,做完岗前体检和酒精测试,这对师徒便动身前往福州火车站。
作为福州火车站返乡客流最大的农民工专列,春运期间,K1268列车基本都是满负荷运转。检票口一开放,乘客们就鱼贯而入。为了确保列车安全,在车站检票旅客进站上车前,张邵军就带着刘子璞对列车进行了一遍全方位的检查,确保列车在运行途中的安全。
10时45分,列车缓缓驶离福州站,张邵军招呼着列车长和检车长碰头后,师徒俩开始去巡视车厢。当两人巡逻到16号车厢时,一位老年旅客拉住张邵军,向他们求助。
图为乘警在达州站维护旅客上下车秩序。 福州铁路公安处供图“老人家,你有什么事需要解决的?”张邵军停下脚步,仔细询问缘由。原来老人姓徐,今年已经75岁了,前阵子刚因病动了手术,因四川老家亲人出了事故,他便急着从福州赶回去照顾。匆忙之下,他没有买到卧铺票,只能坐硬座车厢。时间一长,身子就开始吃不消了,希望能补一张卧铺票。面对老人的需求,张邵军立即找到了列车长,帮助老人补好了卧铺票,又帮助他在新车厢安顿好。
春运旅客增多,列车停站也比较多,旅客上下频繁,极易造成旅客丢失贵重物品事件,需要不停巡视。每到一站,师徒俩都会奔波在车门口,不停地去提示疏导拥挤的旅客。
列车途中临时停靠时,旅客陆某和何某因摆放行李发生了争吵,还相互推搡,引起了同车厢周边旅客的围观。张邵军接到车上工作人员报警后,立即带着徒弟前往处置。经过张邵军耐心调解,讲事实摆道理,最终矛盾平息,车厢秩序恢复正常。张邵军借此向徒弟传授了不少调解“真经”。
凌晨0时47分,列车驶离宜昌东站。“夜间是旅客最容易犯困的时候,也是贵重物品最容易丢失的时候。我们要在重点时段和区段加大对车厢的巡视力度和频率,提醒旅客看护好随身携带的贵重物品,看管好自己的小孩。”张邵军一边巡视着车厢,一边小心叮嘱着徒弟。
凌晨1时30分,忙了一整天的师徒二人终于好好坐下来,交流总结发车以来的工作情况。新老乘警的“接力棒”完成了交接。
经过26个小时的长途旅行,列车终到重庆北火车站,师徒俩对车厢进行安全检查完毕后,又马上准备做好重庆北返回福州的K1270次列车值乘工作。
刘子璞告诉记者,第一个春运意义非凡,让他终生难忘。“师父虽然要退休了,但他把从警40多年的经验都传授给了我,未来我也会踏踏实实站好每一班岗。”刘子璞如是说。(完)
人工智能应用于更多领域 计算机研究深入光电结合****** 英国科学家在人工智能(AI)领域取得多项突破,包括用AI首次控制核聚变、用AI预测蛋白质结构等。“深度思维”与瑞士洛桑联邦理工学院合作,训练了一种深度强化学习算法来控制核聚变反应堆内过热的等离子体并宣告成功,有助加速无限清洁能源的到来。“深度思维”凭借“阿尔法折叠”算法,预测了迄今被编目的几乎所有2亿多个蛋白质的结构,破解了生物学领域最重大的难题之一,有助于应对抗生素耐药性,加速药物开发并彻底改变基础科学。该公司研发的“DeepNash”(深度纳什)学会了在“西洋陆军棋”游戏中,使用虚张声势等欺骗手段来击败人类对手。该公司AI创建的高效数学算法能解决矩阵乘法问题。该公司AI通过模拟数十年足球比赛的情况,学会了熟练地控制数字代理足球运动员,其建模的“AI代理”可与其他人工代理沟通合作,在玩游戏时共同制定计划。 牛津大学研究显示,AI能模拟条件反射进行联想学习,比传统机器学习算法快千倍。利兹大学科学家借助AI扫描视网膜以探知心脏病风险。 在计算机相关领域,牛津大学研究人员开发了一种使用光偏振来实现最大化信息存储密度的设备,其计算密度比传统电子芯片提高了几个数量级。南安普顿大学工程师则与美国科学家携手,设计了一种与光子芯片集成的电子芯片并创造出一种设备,能以超高速传输信息同时产生最少的热量。 在机器人领域,利兹大学团队开发了一种“磁性触手机器人”,直径只有2毫米,可由患者体外的磁铁引导进入肺部狭窄的管道采样。帝国理工学院科学家展示了一组受动物启发的飞行机器人,可在飞行中建造3D打印结构,未来有望用于在偏远地区建造房屋或重要基础设施。格拉斯哥大学科学家将由砷化镓制成的微型半导体打印到柔性塑料表面,所得设备的性能可与目前市场上最好的传统光电探测器媲美,且能承受数百次弯曲,可用作未来机器人的智能电子皮肤。苏格兰科学家开发出了一种先进的压力传感器技术,有助于改进机器人系统,如用于机器人假肢和机械臂。(科技日报记者 刘霞) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |